SIR2-induced inviability is suppressed by histone H4 overexpression.
نویسندگان
چکیده
We have identified histone H4 as a high-expression suppressor of Sir2-induced inviability in yeast cells. Overexpression of histone H3 does not suppress Sir2-induced lethality, nor does overexpression of histone H4 alleles associated with silencing defects. These results suggest a direct and specific interaction between Sir2 and H4 in the silencing mechanism.
منابع مشابه
A role for histone H4K16 hypoacetylation in Saccharomyces cerevisiae kinetochore function.
Hypoacetylated H4 is present at regional centromeres; however, its role in kinetochore function is poorly understood. We characterized H4 acetylation at point centromeres in Saccharomyces cerevisiae and determined the consequences of altered H4 acetylation on chromosome segregation. We observed low levels of tetra-acetylated and K16 acetylated histone H4 (H4K16Ac) at centromeres. Low levels of ...
متن کاملSteps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation.
Transcriptional silencing at the budding yeast silent mating type (HM) loci and telomeric DNA regions requires Sir2, a conserved NAD-dependent histone deacetylase, Sir3, Sir4, histones H3 and H4, and several DNA-binding proteins. Silencing at the yeast ribosomal DNA (rDNA) repeats requires a complex containing Sir2, Net1, and Cdc14. Here we show that the native Sir2/Sir4 complex is composed sol...
متن کاملImpact of histone H4K16 acetylation on the meiotic recombination checkpoint in Saccharomyces cerevisiae
In meiotic cells, the pachytene checkpoint or meiotic recombination checkpoint is a surveillance mechanism that monitors critical processes, such as recombination and chromosome synapsis, which are essential for proper distribution of chromosomes to the meiotic progeny. Failures in these processes lead to the formation of aneuploid gametes. Meiotic recombination occurs in the context of chromat...
متن کاملAssembly of the SIR Complex and Its Regulation by O-Acetyl-ADP-Ribose, a Product of NAD-Dependent Histone Deacetylation
Assembly of silent chromatin domains in budding yeast involves the deacetylation of histone tails by Sir2 and the association of the Sir3 and Sir4 proteins with hypoacetylated histone tails. Sir2 couples deacetylation to NAD hydrolysis and the synthesis of a metabolite, O-acetyl-ADP-ribose (AAR), but the functional significance of NAD hydrolysis or AAR, if any, is unknown. Here we examine the a...
متن کاملSIR2 modifies histone H4-K16 acetylation and affects superhelicity in the ARS region of plasmid chromatin in Saccharomyces cerevisiae
The null mutation of the SIR2 gene in Saccharomyces cerevisiae has been associated with a series of different phenotypes including loss of transcriptional silencing, genome instability and replicative aging. Thus, the SIR2 gene product is an important constituent of the yeast cell. SIR2 orthologues and paralogues have been discovered in organisms ranging from bacteria to man, underscoring the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 162 2 شماره
صفحات -
تاریخ انتشار 2002